Logowanie

Ukryj panel

Strona główna
MRT Net
Reklama
Logowanie
Nick :
Hasło :
 Zapisz
Rejestracja
Zgubiłeś hasło ?

Kamerki internetowe.

Panel sterowania
MRT Net
Aktualności
Artykuły
Archiwum
Czas na narty !
Czas na rower !
Zwiedzaj Kraków
Plikownia
Linki
Kalendarz
Galeria
Radio Online
Gry Online
Twój YouTube!
Ankiety
Newsletter
RSS
Księga gości
Wyszukiwarka
Kontakt

Reklama
MRT Net

40% zniżki karnet w PKL.

Partnerzy

Wyszukiwarka
Zaawansowane szukanie

Chmura Tag'ów
Microsoft Programy Samsung Wave Android Bada Aktualności Linki Nowości Informacje Fotografia T-Mobile Technologie Adobe Specyfikacje Galaxy Premiera Zapowiedzi Intel Nvidia Kraków Architektura Biotechnologia Chip System Nawigacja Galileo Gps Windows Linux Galeria Software Hardware Top 500 Superkomputery Serwer Wirtualizacja Flash Pamięci Internet Plikownia YouTube Gry Radio Amd Panasonic Nokia Nikon Sony OS Cloud Computing Red Hat Enterprise Toshiba LTE 4G Lockheed Martin Motorola IBM Internet Explorer 11 Grafen Wirtualna Mapa Krakowa Lamusownia Kraków DVB-T2 TeamViewer 13.0 Fifa 2018 Trasy rowerowe Pro Evolution Soccer 2018 Mozilla Firefox Pity 2017 Rakiety NSM Windows 8 Sony Xperia Tablet S LEXNET Samsung Galaxy S9 Dworzec Główny Kraków PKP Windows Phone Windows 10 Microsoft Lumia 950



  Naukowcy stworzyli stabilną wersję "molekuły trofeum", wymykającą się badaczom przez całe dekady.
Artykul
Kategoria : Nowe technologie
Dodany : 09.07.2012 22:12
Komentarze : 0



Naukowcy stworzyli stabilną wersję "molekuły trofeum", wymykającą się badaczom przez całe dekady, która może pomóc w produkcji czystszej energii jądrowej.

W artykule opublikowanym w czasopiśmie Science, zespół, złożony z naukowców z brytyjskich uczelni w Nottingham i Manchesterze, wykazał, że jest w stanie przygotować ostateczny azotek uranu, który jest stabilny w temperaturze pokojowej. Co więcej, naukowcy udowodnili, że związek może być przechowywany w słojach w postaci skrystalizowanej lub w formie proszku.

Badania uzyskały wsparcie z finansowanego ze środków unijnych projektu UNCLE (Uran w niekonwencjonalnych środowiskach ligandów), który otrzymał grant Europejskiej Rady ds. Badań Naukowych (ERBN) dla początkujących naukowców w wysokości 999.996 EUR.

Naukowcy informują, że przełom może mieć w przyszłości implikacje dla sektora energetyki jądrowej, gdyż materiały na bazie azotku uranu mają potencjał, by zapewnić opłacalną alternatywę dla obecnych, mieszanych paliw jądrowych wykorzystywanych w reaktorach, ponieważ azotki cechują się wyższą gęstością, temperaturą topnienia i wskaźnikiem przewodzenia ciepła. Ponadto, proces zastosowany przez naukowców do stworzenia związku może zapewnić czystsze procesy w niższej temperaturze niż metody wykorzystywane obecnie.

Wcześniejsze próby przygotowania potrójnych wiązań uran-azot wymagały bardzo niskich temperatur rzędu 5 stopni Kelwina (-268 stopni Celsjusza) - z grubsza odpowiednika temperatury przestrzeni międzygwiazdowej - a przez to sprawiały trudności w pracy i manipulacji, wymagając specjalistycznego sprzętu i technik.

Azotki uranu są zazwyczaj przygotowywane poprzez zmieszanie diazotu lub amoniaku z uranem w wysokiej temperaturze i pod dużym ciśnieniem. Niestety, jednak trudne warunki reakcji występujące w toku przygotowywania powodują wprowadzanie zanieczyszczeń, które trudno usunąć - twierdzą naukowcy. W ostatnich latach naukowcy skoncentrowali się zatem na zastosowaniu niskotemperaturowych metod molekularnych, ale wszystkie poprzednie próby kończyły się produktem mostkowym, a nie docelowym, stabilnym produktem - azotkami.

Metoda wykorzystana w toku badań polega na zastosowaniu niezwykle "masywnych" ligand azotowych (molekuł organicznych związanych z metalem) do owinięcia wokół ośrodka uranu i stworzenia ochronnej przestrzeni, w której może osadzić się azotek. Azotek został ustabilizowany za pomocą syntezy w obecności słabo związanego kationu sodu (jonu naładowanego dodatnio), który zablokował reakcję azotku z innymi pierwiastkami. Na ostatnim etapie, sód został delikatnie wydobyty ze struktury, pozostawiając ostateczne, stabilne wiązanie potrójne azotku uranu.

Dr Stephen Liddle z Uniwersytetu w Nottingham zauważa: "Zaleta tej pracy polega na jej prostocie - otoczkowanie azotku uranu niezwykle masywną, nośną ligandą, stabilizacja azotku w czasie syntezy za pomocą sodu i następnie sekwestracja sodu w łagodnych warunkach umożliwiły nam w końcu wyodrębnienie ostatecznego wiązania azotku uranu".

"Główną motywacją do podjęcia tych prac było pogłębienie naszej wiedzy o charakterze i zakresie kowalencyjności w wiązaniu chemicznym uranu. To niezwykle interesujące i ważne, ponieważ może pomóc w pracach nad ekstrakcją i odseparowaniem 2% - 3% wysoce radioaktywnych materiałów z odpadów atomowych".

Profesor Eric McInnes z Uniwersytetu w Manchesterze dodaje, że spektroskopia elektronowego rezonansu paramagnetycznego (EPR) - technika wykorzystana przez zespół do badania materiałów z elektronami niesparowanymi, "może przynieść szczegółowe informacje o lokalnym środowisku elektronów niesparowanych, a to mona wykorzystać do poznania struktury elektronowej jonu uranu w tym nowy azotku".

"Okazuje się, że nowy azotek zachowuje się odmiennie od analogicznych pod innymi względami materiałów, a to może mieć istotne następstwa w chemii aktynowców, która ma decydujące znaczenie technologiczne i środowiskowe w cyklu paliwowym" - podsumowuje.


źródło: Uniwersytet w Nottingham
  



^ Wróć do góry ^
Powered by MRT Net 2004-2024.